Tubo de PVC VS Conduíte de PVC

Tubo de PVC vs Conduíte de PVC, O Guia de Comparação Definitivo (2025)

Tubo de PVC vs Conduíte de PVC, O Guia de Comparação Definitivo (2025)

1. Introdução

Tubos de PVC e conduítes de PVC são frequentemente confundidos devido à sua aparência semelhante, mas atendem a propósitos completamente diferentes na construção civil. Os tubos de PVC são usados principalmente em sistemas de transmissão de água potável, drenagem, resíduos e ventilação (DWV), bem como em irrigação.

Em contraste, os conduítes de PVC são projetados para proteger a fiação elétrica em ambientes residenciais, comerciais e industriais.

Comparação entre tubos de PVC e conduítes

Their differences go beyond just application—factors such as material composition, structural design, color coding, fittings, adhesives, and regulatory standards set them apart.

In this post, we’ll break down these key differences one by one, explain why distinguish these pipe types important.

2. Composição do material e fabricação entre tubos de PVC e eletrodutos de PVC

2.1 What Is PVC Pipe and Conduit Made Of?

In the world of PVC pipes and electrical conduits, everything starts with the same basic ingredient: PVC resin (Polyvinyl chloride resin). 

Think of it as the “building block” of the plastic family. With different recipes and processing methods, this material can be shaped into products for a wide range of uses.

⚠️But even though they’re all called PVC pipe or conduit, they’re not made the same way.

The PVC used for water pipes and the PVC used for electrical conduits differ a lot in terms of resin grade and molecular structure.

🍞🥟It’s a bit like baking—bread and dumpling wrappers both use flour, but the recipe and purpose are totally different.

To keep everything consistent and safe, there’s an official guideline called ASTM D1784.

The ASTM D1784 standard defines the specifications for rigid Polyvinyl Chloride (PVC) and Chlorinated Polyvinyl Chloride (CPVC) compounds used in various applications

🔬 This standard tells manufacturers what kind of PVC or CPVC (that’s Chlorinated PVC, which can handle higher heat) they should use for different applications—like water pipes, fittings, or electrical conduits.

These materials are chosen for their chemical resistance, heat tolerance, and durability. That’s why you’ll find them in everything from home plumbing systems to industrial equipment.

PVC and CPVC compounds covered under ASTM D1784 primarily consist

🧪 What’s Inside the PVC Recipe?

PVC and CPVC compounds listed in ASTM D1784 usually include:

  • Cloreto de polivinila (PVC)
  • Cloreto de polivinila clorado (CPVC)
  • Copolímeros de cloreto de vinila (com teor mínimo de cloreto de vinila 80%)

🧵 What Material About PVC Pipes?

PVC pipes are made from high-quality plastic that meets safety standards. Before they go out into the field, they must pass two big strength tests:

  • Short-term strength – Can it handle sudden pressure?
  • Long-term strength – Will it last for years without cracking or leaking?

And therefore, some common pipe compounds include:

  • PVC 12454 – Oferece alta resistência e resistência ao impacto.
  • PVC 14333 – Oferece maior durabilidade e desempenho.

And if pipes are used for drinking water, they also need to meet NSF/ANSI 14 standards and be marked with a label that shows they passed testing. If they’re used for reclaimed water, they also need special markings to show that clearly.

⚡ What Material About Conduits?

PVC electrical conduits have their own rules. They’re made from virgin (pure) PVC compounds, also under ASTM D1784. Some common grades include:

  • 12254 ou 121643 – Requer uma resistência à tração mínima de 4.000 psi (28 MPa).
  • 12264 – Stiffer, Requires a minimum tensile modulus of 500,000 psi, providing enhanced rigidity.
  • Fittings (like elbows or junctions) are also made with tested materials such as: 12234 or 13343

🔍Some of the classification numbers like 12254 might seem a bit confusing at first, so we’ll give a simple explanation here.

😊 If you’r curious, feel free to read on.

➡️If not, no worries — you can skip ahead to the next section, where we talk about the different additives used in PVC pipes and conduits.

Exemplo de tabela padrão de classificação de materiais ASTM D1784

📝What Do Those Numbers Mean?

Those codes—like 12454 or 12264—might seem random, but they’re actually a smart classification system. Each number tells you something about the material’s performance. Think of it like a scorecard that rates things like:

  • Resistência ao impacto (capacidade de suportar força sem quebrar)
  • Resistência à tração (resistência às forças de tração)
  • Módulo de elasticidade (rigidez e flexibilidade)
  • Temperatura de deflexão sob carga (resistência ao calor)
  • Base do projeto hidrostático (resistência à pressão ao longo do tempo)

Por exemplo, um composto de PVC com a classificação 12454 can be broken down as follows, according to the table above:

  • 1: Tipo de resina base – Policloreto de vinila (PVC)
  • 2: Resistência ao impacto – Nível moderado (40 ft-lbf/in ou 0,65 J/m)
  • 4: Resistência à tração – Mínimo 7000 psi (48 MPa)
  • 5: Módulo de elasticidade – Mínimo 400.000 psi (2760 MPa)
  • 4: Temperatura de deflexão – 100°C (212°F)

So, once you understand the code, you can quickly compare different PVC materials to find the best one for your project.

💡Even though ASTM D1784 gives us a solid guide, choosing the right material still depends on your specific needs—like whether the pipe is underground, exposed to sunlight, carrying drinking water, or shielding electric wires. Always check with your supplier to make sure the material matches the job.

2.2 Key Additives: What Makes PVC Pipes and Conduits Different

According to ASTM D 1784, in addition to the PVC raw materials we have mentioned above, there will be some compounding ingredients consist of lubricants, stabilizers, non-poly(vinylchloride) resin modifiers, pigments, and inorganic fillers to produce the PVC pipe and PVC conduit.

And in this part, we call additives.

👨‍🍳Think of baking a cake. The main ingredient (PVC resin) is like the flour.

But to get the texture, color, and flavor you want, you need to add things like sugar, eggs, butter—these are like additives in PVC.

Diagrama de aditivos de PVC

These additives determine strength, flexibility, UV resistance, and fire-retardant capabilities of PVC pipe and conduit. 

So, the different additives make differences between PVC pipe and PVC conduit.

 🧪Additives at a Glance

PVC electrical conduit and PVC water pipe additives

 

🧱 Role of Calcium Carbonate (CaCO₃) 
Calcium Carbonate (CaCO₃) is a widely used mineral filler in PVC formulations, derived from natural sources such as limestone, chalk, and marble. 
 
Papel do carbonato de cálcio em tubos de PVC
 
It enhances the mechanical properties, cost-effectiveness, and processing performance of PVC products.
 
Tubo de PVC: Higher CaCO₃ content (up to 25-40%) is commonly used to increase durability and reduce cost while maintaining flow efficiency.
 
Conduíte de PVC: Add no or lower CaCO₃ levels are preferred to maintain electrical insulation properties. Excessive CaCO₃ can increase brittleness and lower dielectric strength, which is crucial for electrical safety.
 

☀️ Role of  UV Inhibitors 

O dióxido de titânio (TiO₂) é o principal estabilizador de UV, atuando como uma barreira protetora para evitar a fotodegradação.

Tubo de PVC, especially potable water and DWV (Drain, Waste, Vent) applications, is usually buried or installed indoors, reducing the need for UV inhibitors.

Alguns tubos de PVC com classificação de pressão usados para irrigação externa ou redes de água podem conter baixos níveis de estabilizadores UV, mas eles não são tão extensos quanto aqueles em conduítes elétricos.

Conduíte de PVC requires enhanced UV resistance especiallyinstalled above ground, where prolonged sun exposure can cause embrittlement and surface degradation.

🧯 Role of Flame Retardancy

Trióxido de antimônio (Sb₂O₃) e compostos halogenados são geralmente adicionados como retardantes de fogo para evitar a propagação de chamas em conduítes elétricos.

PVC Pipe is not required to have flame retardants because it is designed only for fluid transmission.

Conduíte de PVC is required by the National Electrical Code and UL or other national electrical safety requirements to be flame-resistant and self-extinguishing.

Um requisito famoso é a classificação UL 94 V-0, que garante que o conduíte de PVC se autoextingue em 10 segundos após a exposição à chama.

polyvinyl chloride (PVC) resin, a thermoplastic polymer synthesized from vinyl chloride monomers

2.2.4 Papel dos Plastificantes
Plasticizers are additives used in polyvinyl chloride (PVC) to increase flexibility, softness, and workability. 
 
Like hair conditioner—they reduce the glass transition temperature (Tg) of PVC, making it less rigid and more pliable.
 
Some PVC conduit add plasticizers, however, in rigid UPVC conduit (like solar conduit for special application), plasticizers are not typically added or add low because the conduit must remain strong, pressure-resistant, UV-resistant and durable.
 
⚠️ Health Tip: In drinking water pipes, some plasticizers (like phthalates) are banned in many countries because they can leak into the water and be harmful—just like bad ingredients in skincare products.
Países que restringem ou proíbem plastificantes em canos de água de PVC
 
  • União Europeia (UE): Proíbe certos ftalatos em aplicações de contato com alimentos e água sob o REACH (Regulamento CE 1907/2006).
  • Estados Unidos (EPA e FDA):Regulamenta plastificantes em tubulações de água potável, exigindo conformidade com os padrões NSF/ANSI 61.
  • China: Proíbe ftalatos específicos em aplicações em alimentos e água potável.
  • Japão: Proíbe o uso de DEHP e plastificantes similares em sistemas de água potável.

🧼 Role of Antimicrobial Additives

Antimicrobial additives are chemical compounds incorporated into PVC materials to inhibit the growth of bacteria, mold, fungi, and algae.

These additives help maintain hygienic conditions and prevent biofilm formation.

Antimicrobial-Additives-for-Plastics-Polymers

Common types such as Silver ions (Ag⁺), Zinc-based compounds, Triclosan alternatives.

Tubo de PVC: Prevents microbial-induced degradation in sewage and drainage pipes to extend pipe lifespan. And ensures potable water remains safe for human consumption.

PVC Conduit: Doesn’t need these—there’s no water, and its job is to protect wires, not stop germs.

3. Diferenças de projeto estrutural entre tubos de PVC e conduítes de PVC

Agora que exploramos as diferenças nas matérias-primas e aditivos usados em tubos e conduítes de PVC, é igualmente importante examinar suas variações estruturais e de projeto. Embora ambos os produtos possam parecer semelhantes à primeira vista, sua espessura de parede, resistência, classificações de pressão e codificação por cores são especificamente adaptadas às suas aplicações pretendidas.

Nas seções a seguir, detalharemos essas principais distinções estruturais para ajudar você a entender melhor sua funcionalidade e uso adequado.

3.1 Espessura e Resistência da Parede

One of the most fundamental differences between PVC pipes and PVC conduits lies in their wall thickness and structural strength.

These variations are driven by their intended applications.

PVC pipes must withstand internal water pressure, while PVC conduits are designed to protect electrical wiring without carrying fluids.

So tests they should pass are different, and we will make the details in the following.

Espessura e resistência da parede de conduítes e tubos

💧 PVC Pipe: Designed to Hold Water Under Pressure 
Think of PVC pipe like a water bottle under pressure—it needs to be tough enough not to burst, even when it’s filled and squeezed.
To do that, the pipe walls must be thick and strong enough to handle the pressure of flowing water.
🔍 Just in case you’re curious, we’ve also included a simple explanation of some common technical terms and the tests behind them.
Tensão de projeto hidrostático (HDS): This is like the pipe’s endurance level—the amount of stress it can handle from water pressure over many years without breaking.
Pressure Rating (PR): Similar to how a bike tire has a maximum PSI (pounds per square inch), this number tells you how much water pressure the pipe can safely handle.
PVC water pipe
The Formula Behind the Design: Engineers use a formula (2S/P = (D₀/t) − 1) to make sure the pipe is thick enough based on the pipe’s outer diameter, wall thickness, and expected pressure.
  • S (Tensão de Projeto Hidrostático): Medida em psi (ou MPa).
  • P (Classificação de Pressão): Também medido em psi (ou MPa).
  • D₀ (Diâmetro externo médio):Dado em polegadas ou milímetros, este é o diâmetro externo do tubo, que influencia diretamente sua capacidade de pressão.
  • t (Espessura Mínima da Parede): Medida em polegadas ou milímetros, representa a seção mais fina permitida da parede do tubo, garantindo a integridade estrutural sob pressão.

Teste de pressão de tubo de PVC

🔧 How Pipes Are Tested

Like crash-testing a car before it’s sold, PVC pipes go through several tough tests to make sure they’ll last:

  • Teste de pressão sustentada:Checks if the pipe can hold high water pressure for long periods.
  • Teste de Regressão Acelerada: Este teste prevê a resistência à pressão da água a longo prazo e a vida útil do tubo de PVC.
  • Teste de pressão de ruptura: Determina a pressão interna máxima que o tubo pode suportar antes de estourar.
  • Teste de achatamento: Evaluates the mechanical strength and flexibility of the PVC pipe under external compression.

This test ensures the pipe can withstand soil pressure, heavy loads, and physical impacts during installation and service.

PVC Conduit: Built to Protect Wires

Now, imagine a plastic straw wrapped around spaghetti wires—that’s similar to how PVC conduit works.

It doesn’t need to hold pressure inside, but it does need to protect what’s inside from bumps, weight, or accidents on the outside.

When selecting PVC electrical conduit, there are some several key factors that the buyer maybe focus on.

Critical aspects include wall thickness, outer and inner diameter, wall thickness as well as wire fill capacity.

  • Diâmetro externo (DE): Define a largura total do conduíte, afetando a compatibilidade da instalação com conexões e suportes.
  • Diâmetro interno (ID): Determina quantos fios elétricos podem ser passados com segurança dentro do conduíte. O espaço disponível dentro do conduíte deve estar em conformidade com as normas de preenchimento de fios.
  • Espessura da parede: Afeta a resistência mecânica, a resistência ao impacto e a durabilidade ambiental. Também é crucial para cálculos de espaço interno.
  • Capacidade de preenchimento de fio: Refere-se ao número e tamanho máximos de condutores elétricos que podem ser instalados com segurança dentro de um conduíte sem causar superaquecimento ou resistência excessiva.

Preenchimento de conduíte de PVC

📏 Diretrizes da NEC para preenchimento de conduítes

O NEC fornece diretrizes específicas para a porcentagem máxima de preenchimento de fios com base no número de condutores dentro de um conduíte:

  • 1 fio: Até 53% da área interna do conduíte pode ser preenchida.
  • 2 fios: Até 31% de área interna.
  • 3 ou mais fios: O preenchimento total não deve exceder 40% da área interna.

As tabelas de preenchimento de conduítes ajudam os eletricistas a escolher o tamanho correto de conduíte para um número específico de condutores.

🛠️ Strength Tests for Conduit 

Just like a helmet needs to pass safety tests before hitting the market, conduits are tested to ensure they protect wiring properly:

teste de resistência ao esmagamento do conduíte

  • Resistência ao Impacto: O conduíte de PVC deve suportar impactos mecânicos conforme a norma UL 651, garantindo que não rache ou quebre em condições normais de instalação.
  • Resistência à tracção: Isso mede quanta força de tração o conduíte pode suportar antes de quebrar.
  • Resistência ao esmagamento: Indica quanta pressão externa (por exemplo, de solo, concreto ou cargas pesadas) o conduíte pode suportar sem deformar.
  • Teste de deflexão: Isso avalia o quanto um conduíte pode dobrar sob pressão antes que ocorra deformação permanente.

3.2 Compreendendo as classificações de pressão e cronograma em tubos e conduítes de PVC

In our earlier discussion on PVC water pipes, we introduced the concept of pressure rating, which is crucial for determining a pipe’s ability to withstand internal water pressure.

Think of it like a balloon — if you blow too much air into it, it will burst. Similarly, a water pipe needs to handle a certain amount of internal pressure.

If the pressure inside exceeds the pipe’s strength, just like an overinflated balloon, the pipe can fail.

This pressure rating is an essential factor for water pipes, but it’s less relevant for PVC conduits, since they’re not designed to carry fluids under pressure.

🟢 What Does “Schedule” Mean in PVC Pipe and PVC Conduit?

When looking for both water pipes and electrical conduits, you’ll often come across the term “Schedule” or SCH.” 

Comparação entre PVC Schedule 40 e 80

The Schedule (Sch) classification refers to the wall thickness of a PVC pipe or conduit relative to its nominal size.

It is a standardized system primarily used in North America, with common classifications including Anexo 40 (Capítulo 40) e Anexo 80 (Capítulo 80).

The higher the Schedule number, the thicker the pipe wall.

For example, Sch 80 pipes have thicker walls than Sch 40 pipes of the same nominal size, making them stronger and more resistant to pressure.

🔵 SDR em tubos de PVC 

While Schedule is one way to describe pipe strength, there’s another system used mostly for water pipes: SDR, or Standard Dimension Ratio.

💡 Note: SDR is used for PVC pipes, not for conduits.

SDR (Standard Dimension Ratio) is a key parameter used to define the relationship between a PVC pipe’s outer diameter (OD) and wall thickness.

It is an essential factor in determining the pressure rating of the pipe.

SDR pipes maintain a consistent OD-to-wall thickness ratio, meaning that wall thickness increases proportionally with pipe size while maintaining the same pressure rating.

SDR em tubos de PVC

A fórmula para SDR é: SDR = Diâmetro externo (OD) / Espessura da parede

  • Lower SDR = Stronger pipe =  thicker walls and higher pressure resistance.
  • Higher SDR = Lighter but weaker pipe =  thinner walls and lower pressure resistance.

Conforme mostra a Tabela 2.

Tubo de plástico PVC com diâmetros externos IPS

3.3 Codificação de cores e identificação em tubos e conduítes de PVC

Color coding is like a universal language for PVC pipes and conduits. It helps anyone who’s working with them quickly figure out what each one is used for, even if they’re not familiar with the specific installation.

Color coding is like a traffic light system 🚦 — each color tells you what to do next. Just as a red light means stop, and a green light means go, each color of PVC pipe or conduit signals its specific function. Understanding these color codes is crucial for safety and getting the job done efficiently.

While regional standards might slightly vary, there are common color conventions that help differentiate PVC pipes and conduits at a glance. Let’s break it down:

🚰 Codificação de cores padrão para tubos de PVC

Tubos de PVC usados em encanamento, irrigação e aplicações industriais geralmente seguem estas convenções gerais de cores:

Codificação de cores padrão para tubos de PVC

  • Branco ou cinza – Comumente usado para abastecimento e drenagem de água potável, águas residuais e não potáveis para irrigação e reutilização industrial.
  • Laranja ou Vermelho – Usado em sistemas de supressão de incêndio (por exemplo, redes subterrâneas de incêndio).

🔥 Codificação de cores padrão para conduítes de PVC

Os conduítes elétricos de PVC seguem um conjunto diferente de convenções de cores, ditadas principalmente pelos padrões da indústria e códigos elétricos:

Codificação de cores padrão para conduítes de PVC

  • Cinza – A cor mais comum para conduítes elétricos padrão, incluindo conduítes de PVC Schedule 40 e Schedule 80 usados em fiação residencial, comercial e industrial.
  • Laranja ou Vermelho – Frequentemente usado em linhas elétricas de alta tensão ou subterrâneas para sinalizar cautela durante escavações.
  • Azul ou Branco – Frequentemente designado para cabos de comunicação, linhas de fibra óptica e aplicações de baixa tensão.

⚠️ However, the color of PVC conduit might change based on the manufacturer or the specific job.

So while these color codes are general rules, always make sure to check your local codes and regulations to stay on the safe side!

🔖 Markings and Identification Labels

If you’re ever unsure, the markings on PVC pipes and conduits will tell you exactly what you need to know.

These markings are like the labels on a product in a store — they give you key information about what you’re dealing with.

Marcações de conduítes e etiquetas de identificação

Common elements found on PVC pipe and conduit markings:

  • Nome ou código do fabricante: Identifica o produtor do tubo ou conduíte.
  • Data de produção e código do lote: Usado para controle de qualidade e rastreabilidade em caso de defeitos ou recalls.
  • Tamanho e dimensões do tubo: Indica claramente o tamanho nominal do tubo (NPS) ou o diâmetro externo (OD) para garantir a seleção e a compatibilidade corretas.
  • Designação do material: Etiquetado com “PVC” seguido do grau do material (por exemplo, “PVC 1120” ou “PVC 1220”).
  • Cronograma (SCH): Comum para encanamentos e conduítes, indicando classificações de espessura de parede como “SCH 40” ou “SCH 80”.

4. Comparação de métodos de conexão em tubos e conduítes de PVC

Além das diferenças em materiais, conceitos, estrutura e cor que discutimos, os canos de água e conduítes elétricos de PVC também diferem significativamente em seus encaixes e métodos de conexão.

For example, water pipes need to prevent water from leaking out, while electrical conduits need to keep water from flowing in.

Let’s explore how these differences play out in the connection methods.

4.1 Same Funções e papéis dos acessórios em tubos e conduítes de PVC

Funções e papéis dos acessórios em tubos e conduítes de PVC

Fittings are essential components in both PVC piping and conduit systems.

  • Seções de conexão: Acoplamento - União de dois ou mais pedaços de tubo ou conduíte para estender o sistema.
  • Mudando de direção: Cotovelo - Permite transições suaves em vários ângulos para contornar obstáculos ou se alinhar aos requisitos do projeto.
  • Ramificando o Sistema: Tee - Criação de múltiplos caminhos para fluxo de fluidos (em encanamentos) ou roteamento de fios (em aplicações elétricas).
  • Vedação e Proteção: Garantir distribuição de água à prova de vazamentos para encanamentos e conexões seguras e isoladas para conduítes elétricos.

4.2 Different Fittings Requirements in PVC Pipe and Conduit

Uma diferença fundamental entre os dois sistemas é a necessidade de caixas de junção e caixas adaptáveis em sistemas de conduítes elétricos, que não são encontradas em tubulações de água.

Caixa de junção - Diferentes requisitos de encaixe em tubos e conduítes de PVC

  • Caixas de junção act as interconnection points for electrical wires, providing space for splicing and ensuring safety.
  • Caixas Adaptáveis allow flexibility in conduit design, making it easier to modify or expand electrical systems.

Esses gabinetes também fornecem proteção mecânica para conexões elétricas, evitando exposição à umidade, poeira e danos externos.

🔄Another biggest difference is the requirement about the bending and turning.

Não há regulamentações rígidas sobre ângulos de curvatura total em um sistema de tubulação de água de PVC, desde que a eficiência do fluxo seja mantida.

But in electrical conduit installation, NEC (National Electrical Code) limits the total bends between pull points to 360° to prevent excessive wire friction.

If more bends are needed, a junction box or pull box must be installed. The requirement ensure wires can be pulled through the conduit without excessive friction or damage.

4.3 Soldagem com Cimento Solvente (Cola) em Tubos e Eletrodutos de PVC

O cimento solvente é um tipo de adesivo projetado especificamente para unir tubos e conexões de PVC, amolecendo quimicamente o material para criar uma conexão forte e permanente.

O cimento solvente não apenas cola superfícies, mas as funde em uma única peça contínua. Esse método de colagem garante uma junta durável e à prova de vazamentos, tornando-o amplamente utilizado em instalações de encanamentos e conduítes elétricos.

However, there’s a difference in cement for water pipes and electrical conduits:

  • 💧Water Pipe Cement: This type of cement needs to meet strict standards to ensure it’s safe for drinking water. Think of it as making sure your cup is clean and safe to drink from.
  • Electrical Conduit Cement: This cement is formulated for durability and water resistance, designed to keep electrical connections safe even in damp or harsh environments.

📋 Always check with your supplier to make sure the solvent cement is made for either water pipes or electrical conduits.

While some cements can be used for both, others are specially formulated for one or the other.

Solvent Cement (Glue) Welding in PVC Pipe and PVC Conduit

🔍 If you’re curious about the technical side, solvent cements are actually governed by a detailed standard:  (Reapproved 2024).

Teor de resina: O teor de resina de PVC deve ser de pelo menos 10%.

Capacidade de dissolução: O cimento deve ser capaz de dissolver 3% adicionais em peso de composto de PVC 12454-B (pó ou granular) ou uma resina de PVC equivalente a 73,4 ± 3,6°F (23 ± 2°C) sem sinais de gelificação.

iscosity and Strength Over Time:

Cements are classified based on how strong they get over time:

  • 250 psi (1.7 MPa) after 2 hours of curing
  • 500 psi (3.4 MPa) after 16 hours of curing
  • 900 psi (6.2 MPa) after 72 hours of curing

Hydrostatic Burst Strength: The minimum hydrostatic burst strength must be ≥ 400 psi (2.8 MPa) after 2 hours of curing.

Generally speaking, plumbing-grade solvent cement must meet potable water safety standards, ensuring no harmful chemicals leach into drinking water.

Electrical conduit solvent cement is formulated for durability and water resistance, as it is often used in environments where electrical safety is a concern.

🛒 Pro Tip Before You Buy

1️⃣ Check the label or spec sheet to understand the product’s specifications. Look for keywords like “potable water safe” or “electrical use only.”

2️⃣ Confirm its intended use—is it made for water pipes or electrical conduits? Each has different bonding needs.

3️⃣ Ask your supplier if you’re unsure. It’s better to double-check than to risk using the wrong cement. They can guide you to the right choice.

5. Conformidade com o Código e Padrões: Diferenças entre Tubulações de Água e Conduítes Elétricos

Tanto os tubos de água quanto os conduítes elétricos de PVC devem estar em conformidade com regulamentações e padrões específicos da indústria para garantir segurança, desempenho e durabilidade. No entanto, as normas que regem esses dois tipos de tubos diferem significativamente de acordo com suas aplicações pretendidas. A seguir, apresentamos alguns exemplos, como nos EUA e no Canadá, mas lembre-se de seguir as regulamentações locais.

5.1 Regulamentos para tubos de PVC de água

Os canos de água de PVC são regulamentados principalmente por padrões de encanamento e qualidade da água para garantir que possam lidar com água pressurizada com segurança, sem lixiviar substâncias nocivas.

  • NSF/ANSI 61 – Garante que o tubo seja seguro para água potável.
  • ASTM Internacional (ASTM D1785, D2241, etc.) – Define padrões de materiais e desempenho.
  • American Water Works Association (AWWA C900, C905) – Regula tubulações de água de grande diâmetro.
  • ISO 1452 – Norma internacional para tubos de pressão de PVC-U.

5.2 Regulamentos de Conduítes Elétricos

Os conduítes elétricos de PVC devem estar em conformidade com os códigos de segurança elétrica para garantir que forneçam proteção adequada para a fiação, resistência a fatores ambientais e resistência mecânica.

Regulamentos de Conduítes Elétricos

6. Conclusão

Tubos e conduítes de PVC são feitos de PVC, mas diferem em design estrutural, composição do material e aplicação. Os tubos são projetados principalmente para transportar fluidos e gases, enquanto os conduítes são projetados para proteger a fiação elétrica.

Para profissionais e entusiastas de bricolage, é crucial escolher tubos ou conduítes de PVC com base na sua finalidade. Eletricistas devem priorizar conduítes para instalações elétricas, garantindo a conformidade com as normas relevantes de segurança e durabilidade. Encanadores devem usar tubos de PVC projetados para sistemas de fluidos. Siga sempre as instruções do fabricante e certifique-se de selecionar as conexões e adesivos corretos para garantir a qualidade e a durabilidade da instalação.

Fornecedor de conduítes de PVC Ctube

Tubo C é um fornecedor confiável de conduítes elétricos, oferecendo uma ampla gama de alta qualidade PVC, UPVC, e LSZH Conduítes. Nossos produtos são projetados para atender às demandas de diversas aplicações elétricas, proporcionando durabilidade, segurança e desempenho excepcionais. Seja em um projeto residencial, comercial ou industrial, a Ctube oferece as soluções de conduítes ideais para garantir instalações seguras e duradouras.

Obrigado pela leitura e boa sorte com seu projeto.

Referência

  • ASTM D 4396  Especificação padrão para compostos rígidos de poli(cloreto de vinila) (PVC) e poli(cloreto de vinila) (CPVC) clorados para tubos e conexões de plástico usados em aplicações sem pressão
  • ASTM D 3915 Especificação padrão para compostos rígidos de poli(cloreto de vinila) (PVC) e poli(cloreto de vinila) clorado (CPVC) para tubos e conexões de plástico usados em aplicações de pressão1
  • ASTM D 2241 Especificação padrão para tubo de policloreto de vinila (PVC) com classificação de pressão (série SDR)
  • ASTM D 1784 Especificação padrão para compostos rígidos de poli(cloreto de vinila) (PVC) e compostos clorados de poli(cloreto de vinila) (CPVC)
  • ASTM D 2665 Especificação padrão para tubos e conexões de drenagem, resíduos e ventilação de plástico de policloreto de vinila (PVC)
  • ASTM F512-12 Especificação padrão para eletrodutos e conexões de policloreto de vinila (PVC) de parede lisa para instalação subterrânea
  • ASTM D1785-21a Especificação padrão para tubos de plástico de policloreto de vinila (PVC), cronogramas 40, 80 e 120
  • ASTM D4216  Especificação padrão para compostos de poli(cloreto de vinila) (PVC) rígido e compostos de PVC e poli(cloreto de vinila) (CPVC) clorados relacionados à construção
  • ASTM D2122 Método de teste padrão para determinar dimensões de tubos e conexões termoplásticas
  • ASTM D1785 Especificação padrão para tubos de plástico de policloreto de vinila (PVC), cronogramas 40, 80 e 1201
  • ASTM D2564-20 Especificação Padrão para Cimentos Solventes para Sistemas de Tubulações de Plástico de Poli(Cloreto de Vinila) (PVC)
  • ASTM F493-20 Especificação padrão para cimentos solventes para tubos e conexões de plástico de policloreto de vinila clorado (CPVC)
  • ASTM D3138-21 Especificação Padrão para Cimentos Solventes para Juntas de Transição entre Componentes de Tubulações Não Pressurizadas de Acrilonitrila-Butadieno-Estireno (ABS) e Poli(Cloreto de Vinila) (PVC)
  • ASTM D2855-20 Prática padrão para o método de duas etapas (primer e cimento solvente) de união de componentes de tubos e tubulações de poli(cloreto de vinila) (PVC) ou poli(cloreto de vinila) clorado (CPVC) com soquetes cônicos
  • ASTM F656-21 Especificação padrão para primers para uso em juntas de cimento solvente de tubos e conexões de plástico de poli(cloreto de vinila) (PVC)

Tubo de PVC vs Conduíte de PVC, O Guia de Comparação Definitivo (2025) Ler mais »

QUAL-É-A-DIFERENÇA-ENTRE-PVC-BRANCO-E-PVC-CINZA

Qual é a diferença entre PVC branco e PVC cinza?

O PVC (Policloreto de Vinila) é um material versátil usado em várias aplicações, incluindo sistemas de encanamento e conduíte elétrico. É importante entender as diferenças entre o tubo de PVC branco e o conduíte de PVC cinza, pois eles atendem a propósitos distintos. Nesta publicação, exploraremos as distinções entre o tubo de PVC branco e o conduíte de PVC cinza para ajudar você a entender seus usos e características específicos.

Características do tubo de PVC branco

O tubo de PVC branco, também conhecido como tubo de encanamento de PVC, é usado principalmente em sistemas de encanamento para transportar água e lidar com drenagem.

As características do tubo de PVC branco incluem:

Durabilidade: O tubo de PVC branco é altamente durável e resistente à corrosão, o que o torna ideal para aplicações de encanamento que envolvem abastecimento e drenagem de água.
Leve: o tubo de PVC é leve, facilitando o manuseio e a instalação.
Resistência química: o tubo de PVC branco é resistente a produtos químicos comumente encontrados em sistemas de encanamento, garantindo um desempenho duradouro.
Interior liso: O interior do tubo de PVC branco é liso, permitindo um fluxo de água eficiente e minimizando o atrito.
Disponibilidade de tamanhos: O tubo de PVC branco está disponível em vários tamanhos para atender a diferentes necessidades de encanamento.

Características do Eletroduto de PVC Cinza:

O conduíte de PVC cinza é projetado especificamente para instalações elétricas, fornecendo um caminho de proteção para fios elétricos.

As características do conduíte de PVC cinza incluem:

Resistência aos raios UV: o conduíte de PVC cinza é projetado para suportar a exposição aos raios UV, o que o torna adequado para aplicações externas, onde ficará exposto à luz solar.
Durabilidade: O conduíte de PVC cinza é altamente durável e pode suportar diversas condições climáticas, o que o torna ideal para uso externo e aplicações subterrâneas.
Estrutura rígida: o conduíte de PVC geralmente está disponível em formato rígido, proporcionando estabilidade e proteção para fios elétricos.
Disponibilidade de tamanhos: O conduíte de PVC cinza está disponível em vários tamanhos para acomodar diferentes configurações de fios.

Principais diferenças entre tubos de PVC branco e conduítes de PVC cinza

As principais diferenças entre tubos de PVC branco e conduítes de PVC cinza podem ser resumidas da seguinte forma:

Aplicação: O tubo de PVC branco é usado principalmente em sistemas de encanamento para abastecimento e drenagem de água, enquanto o conduíte de PVC cinza é projetado especificamente para instalações elétricas.
Cor: O tubo de PVC branco é branco brilhante, enquanto o conduíte de PVC cinza tem uma cor cinza mais escura.
Estrutura: O tubo de PVC branco geralmente é flexível para acomodar configurações de encanamento, enquanto o conduíte de PVC cinza geralmente é rígido para fornecer suporte e proteção para a fiação elétrica.
Resistência UV: O conduíte de PVC cinza oferece melhor resistência UV em comparação ao tubo de PVC branco, tornando-o adequado para instalações externas.

Concluindo, o tubo de PVC branco e o conduíte de PVC cinza atendem a propósitos diferentes em sistemas de encanamento e elétricos, respectivamente. O tubo de PVC branco é usado para abastecimento de água e drenagem em aplicações de encanamento, enquanto o conduíte de PVC cinza fornece um caminho de proteção para fiação elétrica. Considere os requisitos específicos do seu projeto para determinar se você precisa de tubo de PVC branco para encanamento ou conduíte de PVC cinza para instalações elétricas. Ao escolher o material apropriado, você pode garantir o sucesso e a eficiência do seu sistema de encanamento ou elétrico

Qual é a diferença entre PVC branco e PVC cinza? Ler mais »

Rolar para cima

Solicite um orçamento

Preencha o formulário abaixo ou envie um e-mail para [email protected]

Insira detalhes do produto (como modelo, tamanho, quantidade etc.) e outros requisitos específicos para receber um orçamento preciso.
Converse conosco
👋 Bem-vindo ao Ctube!

Procurando por um fornecedor confiável de conduítes elétricos? Estamos aqui para ajudar!
Converse conosco no WhatsApp para obter suporte rápido, orçamentos ou qualquer dúvida sobre nossos produtos.

Para mais informações, envie um e-mail para [email protected].